|
1: |
|
sortSu(circ(sortSu(cons(te(a),sortSu(s))),sortSu(t))) |
→ sortSu(cons(te(msubst(te(a),sortSu(t))),sortSu(circ(sortSu(s),sortSu(t))))) |
2: |
|
sortSu(circ(sortSu(cons(sop(lift),sortSu(s))),sortSu(cons(te(a),sortSu(t))))) |
→ sortSu(cons(te(a),sortSu(circ(sortSu(s),sortSu(t))))) |
3: |
|
sortSu(circ(sortSu(cons(sop(lift),sortSu(s))),sortSu(cons(sop(lift),sortSu(t))))) |
→ sortSu(cons(sop(lift),sortSu(circ(sortSu(s),sortSu(t))))) |
4: |
|
sortSu(circ(sortSu(circ(sortSu(s),sortSu(t))),sortSu(u))) |
→ sortSu(circ(sortSu(s),sortSu(circ(sortSu(t),sortSu(u))))) |
5: |
|
sortSu(circ(sortSu(s),sortSu(id))) |
→ sortSu(s) |
6: |
|
sortSu(circ(sortSu(id),sortSu(s))) |
→ sortSu(s) |
7: |
|
sortSu(circ(sortSu(cons(sop(lift),sortSu(s))),sortSu(circ(sortSu(cons(sop(lift),sortSu(t))),sortSu(u))))) |
→ sortSu(circ(sortSu(cons(sop(lift),sortSu(circ(sortSu(s),sortSu(t))))),sortSu(u))) |
8: |
|
te(subst(te(a),sortSu(id))) |
→ te(a) |
9: |
|
te(msubst(te(a),sortSu(id))) |
→ te(a) |
10: |
|
te(msubst(te(msubst(te(a),sortSu(s))),sortSu(t))) |
→ te(msubst(te(a),sortSu(circ(sortSu(s),sortSu(t))))) |
|
There are 14 dependency pairs:
|
11: |
|
SORTSU(circ(sortSu(cons(te(a),sortSu(s))),sortSu(t))) |
→ SORTSU(cons(te(msubst(te(a),sortSu(t))),sortSu(circ(sortSu(s),sortSu(t))))) |
12: |
|
SORTSU(circ(sortSu(cons(te(a),sortSu(s))),sortSu(t))) |
→ TE(msubst(te(a),sortSu(t))) |
13: |
|
SORTSU(circ(sortSu(cons(te(a),sortSu(s))),sortSu(t))) |
→ SORTSU(circ(sortSu(s),sortSu(t))) |
14: |
|
SORTSU(circ(sortSu(cons(sop(lift),sortSu(s))),sortSu(cons(te(a),sortSu(t))))) |
→ SORTSU(cons(te(a),sortSu(circ(sortSu(s),sortSu(t))))) |
15: |
|
SORTSU(circ(sortSu(cons(sop(lift),sortSu(s))),sortSu(cons(te(a),sortSu(t))))) |
→ SORTSU(circ(sortSu(s),sortSu(t))) |
16: |
|
SORTSU(circ(sortSu(cons(sop(lift),sortSu(s))),sortSu(cons(sop(lift),sortSu(t))))) |
→ SORTSU(cons(sop(lift),sortSu(circ(sortSu(s),sortSu(t))))) |
17: |
|
SORTSU(circ(sortSu(cons(sop(lift),sortSu(s))),sortSu(cons(sop(lift),sortSu(t))))) |
→ SORTSU(circ(sortSu(s),sortSu(t))) |
18: |
|
SORTSU(circ(sortSu(circ(sortSu(s),sortSu(t))),sortSu(u))) |
→ SORTSU(circ(sortSu(s),sortSu(circ(sortSu(t),sortSu(u))))) |
19: |
|
SORTSU(circ(sortSu(circ(sortSu(s),sortSu(t))),sortSu(u))) |
→ SORTSU(circ(sortSu(t),sortSu(u))) |
20: |
|
SORTSU(circ(sortSu(cons(sop(lift),sortSu(s))),sortSu(circ(sortSu(cons(sop(lift),sortSu(t))),sortSu(u))))) |
→ SORTSU(circ(sortSu(cons(sop(lift),sortSu(circ(sortSu(s),sortSu(t))))),sortSu(u))) |
21: |
|
SORTSU(circ(sortSu(cons(sop(lift),sortSu(s))),sortSu(circ(sortSu(cons(sop(lift),sortSu(t))),sortSu(u))))) |
→ SORTSU(cons(sop(lift),sortSu(circ(sortSu(s),sortSu(t))))) |
22: |
|
SORTSU(circ(sortSu(cons(sop(lift),sortSu(s))),sortSu(circ(sortSu(cons(sop(lift),sortSu(t))),sortSu(u))))) |
→ SORTSU(circ(sortSu(s),sortSu(t))) |
23: |
|
TE(msubst(te(msubst(te(a),sortSu(s))),sortSu(t))) |
→ TE(msubst(te(a),sortSu(circ(sortSu(s),sortSu(t))))) |
24: |
|
TE(msubst(te(msubst(te(a),sortSu(s))),sortSu(t))) |
→ SORTSU(circ(sortSu(s),sortSu(t))) |
|
The approximated dependency graph contains one SCC:
{12,13,15,17-20,22-24}.